26th International Seminar on Interaction of Neutron with Nuclei Xi' an, May 28th-June 1th 201

Study of fission dynamics and program in CSNS

Taofeng Wang Beihang University tfwang@buaa.edu.cn

Collaborators : 1. Shilong Liu, Guangwu Li, Hongyin Han, China Institute of Atomic Energy, China 2. Ramona Vogt Lawrence Livermore National Laboratory, Livermore, USA University of California at Davis, Davis, USA Lawrence Berkeley National Laboratory, USA

3. Jørgen Randrup

Dynamics from sadle to scission in fission reaction

2.0

2.4

date spetting

1.2

α2

1.6

festen products (redinactive nodel)

tasiunable mucheus

phain reaction.

Neutron and Gamma Multiplicity

Neutron and Gamma Multiplicity

Gamma spectra and Multiplicity

Correlation of neutron multiplicity and γ multiplicity

- ²⁵²Cf spontaneous fission source on C foil
- with ~3*10³ fissions/s rate
- > 2E method was used to determine F mass
- Si detectors measure the fission fragments
- O Neurton detector: liquid scintillator
- > 0° HPGe involve γ -rays with Doppler effect
- > 90[°] HPGe without Doppler effect
 - Neutron detction efficiency was measured by mini ²⁵²Cf ion chamber
 - Compared with M-C calculation
 - HPGe was calibrated by standard sources
 - HPGe was shieled by Pb house
 - Correct the pulse heigth defects of Si
 - Gamma spectra were unfolded

Ratio of γ -ray multiplicity to neutron multiplicity with mass

Pronounced peak occurs in the mass region ~132, near double magic number (Z=50, N=82)

High enhancement exist near 85, where the effects of N=50 and Z=28 shell are evident

R(*A**): ratio of γ-ray multiplicity to neutron multiplicity for individual fragments

Taofeng Wang, et al., Phys. Rev. C, 93, 014606 (2016)

Correlation of neutron multiplicity and *γ***-ray multiplicity**

Gamma multiplicity with the total kinetic energy

- M_v has a maximum value for TKE=165-170 MeV
- Fitting with linear function for TKE>170 MeV
- > TKE< 170 MeV, M_v sharply deviate from the linear fit.

Charge distribution measurement

For a fragment with a given mass number and kinetic energy, the nuclear charge can be determined by the deposited energy of the fragment passing through an absorber.

Fits for ΔE_f using multi-Gaussian function

11

Fractional independent yields for the fragments with A*=101 u and E=118.5 MeV

Systematically, average width of charge distributions decrease with the fragment mass number.

Largest deviation occur near N=50 neutron shell.

> Oscillating nature of σ_{zav} indicates the presence of odd-even effect.

Taofeng Wang, et al., Physical Review C 96 (2017) 034611

Width σ_z dependent on the kinetic energy

The smaller kinetic energy corresponds to higher excitation energy, large number of evaporated neutrons, large variance σ²(v). The intrinsic charge distribution will be spread.

 \triangleright Cold fission (highest kinetic energy) has low yield making σ_1 large.

13

Charge Polarization of light fragments

Energy dependence of the most probable charge

CSNS back-n white neutron

Neutron capture of unstable nuclei

Los Alamos model: neutron spectrum can be expressed by $\phi(\varepsilon) = k(T)\sigma_c(\varepsilon)e^{-\varepsilon/T}$

 $\sigma_{\rm c}(\varepsilon)$ is inverse reaction cross section namely, neutron capture cross section

- 2E-2V method to determine F mass
 MCP+MCP+ double layers chamber
 Thin chamber serves as ΔE
 Thick chamber servers as E
 ΔE-E used to determine F charge
 Flight path length is ~50cm
 Time resolution < 150 ps
- Mass resolution < 1 amu</p>

Testing of MCP

Summary

• Correlation of neutron multiplicity and gamma multiplicity

- ◆ Pronounced peaks of ratio of gamma to neutron multiplicity around A*=78, 132 were observed
- **•** Competition between neutron and gamma emission was observed for heavy fragments region
- Charge distribition measuremnt
 - **•** Average widths of distribution decrease with fragment mass
 - Positive charge polarization in the A*=132 region
 - Most probable charge increase with fragment kinetic energy
- Proposal for the study of neutron capture of unstable nuclei

Thank You !